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We propose an approach for analyzing the basic relation between correlation properties of the original signal
and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation
components. We use this relation to understand the following phenomenon found in many naturally occurring
time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-
range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign
exchange rates reveal that the difference between the correlation properties of the original signal and its
magnitude fluctuations is induced by the time organization structure of the correlation function between the
magnitude fluctuations of positive and negative components. We show that this correlation function can be
described well by a stretched-exponential function and is related to the nonlinearity and the multifractal
structure of the signals.

DOI: 10.1103/PhysRevE.73.066128 PACS number�s�: 89.65.Gh, 89.75.Da, 87.10.�e, 89.20.�a

I. INTRODUCTION

The study of diverse natural and nonstationary signals has
recently become an area of active research for physicists
�1–5�. This is because these signals exhibit interesting dy-
namical properties such as scale invariance, volatility corre-
lation, heavy tails, and multifractality. Among these proper-
ties, empirical findings established volatility correlation
behavior; the changes x�t� �=X�t+1�−X�t�� of a signal �X�t��
are exponentially �short-range� correlated, while the magni-
tude series �x�t�� is power-law �long-range� correlated �2–4�.
Moreover, it was shown that the volatility correlation is uni-
versally observed in diverse time series including economic
data, climate records, and medical signals, which can be used
for economic prediction, climatic risk estimation, and clini-
cal applications �2–4�. These studies provide strong empiri-
cal evidence for the existence of a certain relation between
volatility correlation and nonlinearity of time series, and also
show that the long-range correlation in the magnitude time
series is related to the multifractal spectrum width of the
signal. However, these findings are empirical and the exact
relation between the correlation in x�t� and the correlation in
�x�t�� is unknown. For example, it still remains unclear what
structure of the original fluctuation signal generates volatility
correlation behavior �5�.

In this paper, we show that the relation between scaling
behaviors of original signals and their magnitude fluctuations
can be derived naturally from a detrended fluctuation analy-
sis �DFA�, which is a robust scaling analysis for quantifying
correlation properties of natural signals �6�.

We find that the volatility correlation behavior is induced
by the correlation structure between magnitude fluctuations
of positive and negative components in a fluctuating signal.
Moreover, we confirm this relation by using a magnitude

cross-correlation function, which describes the behavior of
correlation between two magnitude signals for each time
scale. We find that this magnitude cross-correlation function
can be approximated well by a stretched-exponential func-
tion �7�. We then argue that signals with identical long-range
correlations in their magnitude signals can exhibit different
correlation properties depending on the time organization
structures of the magnitude cross-correlation function. Our
method is quite general and is applied to heart rate variability
�HRV� signals and high-frequency foreign exchange �FX�
rates �8� in this paper. We find that the magnitude cross-
correlation function reflects the nonlinear properties and
multifractal structures of these signals.

II. EXPLANATION OF THE VOLATILITY CORRELATION
BEHAVIOR USING THE DFA METHOD

A. Analytical treatment

In our method, the original fluctuation signal x�t�
�t=1,2 , . . . ,N� is decomposed into two sign-separated com-
ponents; a positive fluctuation signal xp�t� �=x�t� if x�t��0,
0 otherwise�, and a negative fluctuation signal xn�t�
�=x�t� if x�t��0, 0 otherwise�. Then, x�t�=xp�t�+xn�t�. In
general, by the superposition rule of the detrended fluctua-
tion analysis method in the reconstruction of the signal from
the summation of two fluctuation signals f�t� and g�t�, there
exists a well-known mathematical relation between their root
mean square �rms� fluctuation functions Ff, Fg, and Ff+g �9�.
This can be applied to our case as follows:

F2�n� = Fp
2�n� + Fn

2�n� + 2Fpn�n� , �1�

where F�n�, Fp�n�, and Fn�n� are the rms fluctuations for
segments with time length n of the cumulative integrated
signals Y�t�, Yp�t�, and Yn�t� for x�t�, xp�t�, and xn�t�, respec-
tively.

Note that Fpn in Eq. �1� is represented as
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where Yp
� and Yn

� are the signal sequences of Yp and Yn in a
segment � of time length n with their corresponding local
trends yp

� and yn
�, and 2Ln is the total number of the segments

in the entire signal. The vectors V� p
� and V� n

� are the
n-dimensional vectors that denote the local detrended signals
�Yp

� −yp
�� and �Yn

� −yn
�� in the segment �, respectively. The

solid �dotted� lines in Figs. 1�a� and 1�c� represent the signals

xp�t� �xn�t�� and V� p
��t� �V� n

��t�� in a segment �, respectively.
Here, FX data with time length n �=400� are used �8�. The
solid horizontal line in Fig. 1�c� corresponds to the local

trends yp
��t� and yn

��t�. Figures 1�a� and 1�c� show that V� p
��t�

�V� n
��t�� has the tendency to be positive �negative� in the time

region with large magnitude fluctuations in xp�t� �xn�t��, and
negative �positive� in the time region with small magnitude
fluctuations. When the fluctuations in xp�t� and xn�t� increase

and decrease synchronously, V� p
��t� and V� n

��t� have opposite
signs. This relation is obvious because Yp�t� and Yn�t� are the
cumulative integrated signals of xp�t� and xn�t�, respectively.
The term inside the large parenthes in the second equality of

Eq. �2� represents a dot product between V� p
� and V� n

�. When
xp�t� and �xn�t�� increase or decrease synchronously on a time
scale n, this dot product becomes negative with �

2 ��pn
� ��

�Figs. 1�a� and 1�c��. It becomes positive with 0��pn
� �

�
2 for

asynchronous increase or decrease in xp�t� and �xn�t�� �Figs.
1�b� and 1�d��. The former case with �

2 ��pn
� �� is defined

as the out-of-phase correlation between the magnitude
fluctuations of xp�t� and xn�t�, and the other case with
0��pn

� �
�
2 is the in-phase correlation. Therefore, the func-

tion Fpn�n� describes the time organization structure in cor-
relation between the magnitude fluctuations xp�t� and �xn�t��,
on a scale n.

In the DFA method, the function F�n� is usually approxi-
mated by a power-law scaling function, so that we write

F2�n� 	 k2n2H 	 Fp
2�n� + Fn

2�n� + 2Fpn�n� , �3�

where the Hurst exponent H describes the correlation prop-
erty of x�t� �10�. When H	0.5, the signal is uncorrelated.
When H�0.5 ��0.5�, the signal is anticorrelated �corre-
lated�. If Fpn�n��0 ��0� for all scales n, the out-of-phase
�in-phase� correlation between xp�t� and �xn�t�� is dominant.
From this relation, the decomposition of the fluctuation func-
tion F
�n� for the magnitude �or volatility� signal �x�t�� can
also be derived. The magnitude signal �x�t�� can be expressed

as �x�t��=xp�t�+ �xn�t��. Therefore, the vector V� n
� in Eq. �2� is

transformed into −V� n
� and for the three functions on the right

hand side of Eq. �1� the function Fpn�n� becomes −Fpn�n�
while the other functions remain unchanged. From Eqs. �2�
and �3�, it is straightforward to see that the fluctuation func-
tion F
�n� can be written as

F

2�n� 	 k


2n2H
 	 Fp
2�n� + Fn

2�n� − 2Fpn�n� , �4�

where the new magnitude Hurst exponent H
 describes the
correlation property of the magnitude signal �x�t��. From Eqs.
�3� and �4�, we obtain

k

2n2H
 − k2n2H = k


2n2H
�1 − � k

k

�2

n2�H−H
��
	 − 4Fpn�n� �= fpn

2 �n�� . �5�

The difference between the scaling behavior �H� of F�n� and
scaling behavior �H
� of F
�n� is induced by the time orga-
nization structure of the function −4Fpn�n� for a scale n. The
signal with volatility correlation behavior corresponds to
H
 �0.5 and H�0.5. Since H
 �H, Fpn�n� in Eq. �5� is

FIG. 1. �a� The fluctuation x�t�
for the out-of-phase correlated
state in a segment � of time length
n=400. The solid �dotted� line
corresponds to xp�t� �xn�t�� of x�t�.
�b� The in-phase correlated state.

�c� The vectors V� p
� �solid� of xp�t�

and V� n
� �dotted� of xn�t� for x�t� in

�a�. �d� V� p
� and V� n

� for x�t� in �b�.
The data are from the FX ex-
change rate of lira �Italy� for the
U.S. dollar in 1996 �8�.
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dominated by the scaling behavior of F
�n� as the scale n
increases. In this case, from Eq. �5�, we see that Fpn�n� be-
comes negative �out of phase� for n�nmin, where the mini-
mum scale nmin is given by

nmin 	 � k

k

�1/�H
−H�

. �6�

In this scale region with out-of-phase correlation, the func-
tion −4Fpn�n� in Eq. �5� is denoted as fpn

2 �n� for convenience.
Only this scaling region is studied for the analysis of the
HRV data and FX data used in our paper. Note that,
as n→	, fpn�n� converges to the scaling behavior of F
�n�
with the exponent H
. The signal with the synchronous rela-
tion �out-of-phase correlation� between the magnitude fluc-
tuations of positive and negative components can exhibit
volatility correlation behavior.

B. Application to real data

We have applied our method to complex time series with
volatility correlations. As typical examples, we chose heart
rate variability and foreign exchange data �8�. We used the
second-order detrended fluctuation analysis �DFA2� with
scales 64
n
1024. The scale n denotes the increments of
heartbeat �RR� interval sequences, which are composed of
the time durations between consecutive R waves of electro-
cardiograms, in the HRV data and logarithmic price changes
in the FX signals �8�. In Fig. 2, both HRV and FX data show
long-range correlation properties in their magnitude fluctua-
tions with H
 �0.5. However, the original HRV signals are
highly anticorrelated �H	0�, while the original FX signals
are almost uncorrelated �H�0.5�. For the HRV data, the
term knH in Eq. �5� becomes negligible in comparison with
k
nH
 for large n because H��H
� approaches zero. There-
fore, in Fig. 3�a�, the function fpn�n� has scale invariance
with the same scaling exponent �H
� as F
�n� for all scales n.
In Fig. 2�a�, the scaling exponents Hpn �open circles� of
fpn�n� are almost equal to those of H
 �closed circle� for the
entire region in n. On the other hand, for the FX data, a
universal scaling behavior of fpn�n� cannot be defined for all
scales n because the exponent H is not negligible compared
with H
 for the short-range scale n. For the long-range scale,
fpn�n� approaches the scaling behavior of F
�n� �Fig. 3�b��.
These empirical findings suggest that the relation between
the correlation properties of the original signal and its mag-
nitude can be explained through a correlation structure
�fpn�n�� between fluctuation magnitudes of positive and
negative components for the scale n.

III. MAGNITUDE CROSS-CORRELATION FUNCTION

We can study the nontrivial correlation structure between
magnitude fluctuations of positive and negative components
of a signal for a scale n by using the magnitude cross-
correlation function. This magnitude cross-correlation func-
tion is defined by

C„n;�Yp�n,t�, ��Yn�n,t��… =
�Yp��Yn�� − �Yp���Yn��

��Yp
��Yn

,

�7�

where �Yp�n , t�=Yp�t+n�−Yp�t� and �Yn�n , t�
=Yn�t+n�−Yn�t� �t=1,2 , . . . ,N−n�. The quantities ��Yp

and
��Yn

correspond to the standard deviations of �Yp and �Yn,
respectively. The signal �Yp�n , t� ���Yn�n , t��� is given by
�i=t+1

t+n xp�i� ��i=t+1
t+n �xn�i���, which represents the volatility of a

positive �negative� component for a given scale n. Therefore,
the magnitude cross-correlation function C�n ;�Yp , ��Yn��
exhibits the correlation structure between the magnitude
fluctuations of positive and negative components of a signal
x�t� for a given scale n. The magnitude cross-correlation
function ranges between −1 and 1. It approaches 1 �−1�
faster as the out-of-phase �in-phase� correlation structure in a
signal becomes more dominant for a scale n.

Figure 4�a� shows the magnitude cross-correlation func-
tion C�n� for HRV signals of five people randomly selected
from 36 data sets in Fig. 2�a�. We find that the HRV signals
are highly out-of-phase correlated for all scales with
C�n��0.95. In Fig. 4�b�, C�n� for five FX data �index
i=1–5 in Fig. 2�b�� are plotted and compared with those for
the HRV data in Fig. 4�a�. We can see that the C�n� of HRV
data approaches unity much faster than that of the FX data,

FIG. 2. �a� The scale exponents H, H
 �•�, and Hpn ��� of the
interbeat interval signals x�t� for 36 HRV data. �b� The scale expo-
nents H and H
 of price change signals x�t� of nine foreign ex-
change rates for the U.S. dollar. Data indices: i=1 �Germany,
DEM�, 2 �Japan, JPY�, 3 �Italy, ITL�, 4 �France, FRF�, 5 �Switzer-
land, CHF�, 6 �Belgium, BEF�, 7 �Denmark, DKK�, 8 �Spain, ESP�,
and 9 �Finland, FIM�.
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which suggest that the HRV signals are more anticorrelated
than the FX signals �Fig. 2�. The correlation functions C�n�
in Figs. 4�a� and 4�b� are fitted by a stretched exponential-
function �continuous curves� �7�

C�n� 	 exp�− � n

T
�� � � 0� , �8�

where T is constant. The correlation function in �7� is a
stretched-exponentially decaying function since 0��1.
However, in our case, it is an increasing function since
�0. By rescaling Eq. �8�, we get

R�n� = T�− ln C�n��1/ 	 n . �9�

Figure 5�a� shows that the relation in Eq. �9� is satisfied for
both HRV and FX signals and the function C�n� is fitted by a
stretched-exponential function very well. Due to the form of
the stretched-exponential function in Eq. �8�, C�n� ap-
proaches unity faster as  and T decrease further. Therefore,
the original signal becomes more anticorrelated as  and T
decrease. Figure 5�b� shows  and T derived from the mag-
nitude cross-correlation function C�n� of the HRV and FX
signals. The dissimilarity between the characteristic behav-
iors of C�n� of HRV and FX data is well classified by the line
of =−1. The magnitude signals of HRV and FX data have

similar long-range correlation properties as in Fig. 2. How-
ever, due to this dissimilarity in  and T the original signals
of HRV data are highly anticorrelated �H	0�, while the FX
data are almost uncorrelated �H�0.5�. In general, signals
with identical long-range correlations in their magnitude sig-
nals can exhibit different correlation properties depending on
the structure of the function C�n� defined by  and T.

IV. THE NONLINEAR TIME ORGANIZATION
STRUCTURE OF FUNCTION C„n…

Here, we investigate the nonlinear property of the func-
tion C�n� through the surrogate test. It has been shown that
the long-range correlation property of the magnitude fluctua-
tions carries information on the nonlinear properties of the
original signals �heartbeat or multifractal signals� �3,4�. In
Eq. �5�, the exponent H reflects the linear two-point correla-
tion structure; thus the nonlinear property of the magnitude
fluctuation can be embedded into the time organization of
Fpn�n�. We generate surrogate data for the HRV and FX data
in Fig. 4�b� by randomizing the Fourier phases of these data,
preserving the amplitude of the Fourier transform. This pro-
cedure eliminates nonlinearities, preserving linear features
�H� of the original signals �11�. Figure 6 shows the behaviors
of C�n� for the original and surrogate signals of HRV �Fig.
6�a�� and FX �Fig. 6�b�� data. The structures of C�n� of the
original signals are destroyed by the surrogate procedure,
while those of the surrogate signals exhibit time organization
significantly different from the stretched-exponential func-

FIG. 3. �a� The scaling behaviors of F
�n� ��� and fpn�n� ���
for the HRV signal of a healthy subject �8�. �b� The scaling behav-
iors of F
�n� and fpn�n� for the JPY-USD FX data in Fig. 2�b�.

FIG. 4. �Color online� �a� The magnitude cross-correlation func-
tion C�n� for five people randomly selected from the 36 HRV data.
The function C�n� is fitted by a stretched-exponential function
�solid curves�. �b� The function C�n� �square dotted� of HRV data in
Fig. 4�a� is plotted for comparison with C�n� of FX data.
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tion in Eq. �8�. Our result shows that the time organization in
the correlation between magnitude fluctuation signals of
positive and negative components is related to the nonlinear
properties of these HRV and FX signals.

V. THE MULTIFRACTAL ANALYSIS

Ashkenazy et al. demonstrated that the difference be-
tween the correlation properties of the original signal and its
magnitude signal is proportional to the multifractal spectrum
width for signals generated by the multiplicative cascading
process and real finance data �4�. In our result, the relation
between the correlation properties of the original and mag-
nitude signals is connected to the behavior of the correlation
function C�n� for the scale n, which, in turn, is related to the
multifractal structure of the original signal.

We derive the multifractal spectrum for the HRV data in
Fig. 4�a� and the FX data in Fig. 4�b�. Figure 7�a� represents
the multifractal structures for typical HRV data and FX data.
We applied the wavelet transform modulus maxima
�WTMM� method to derive the multifractal spectrum with
the local Hurst exponent � and the function f��� �12�. The
function f��� is the fractal dimension of the subset of the
time series characterized by the local Hurst exponent �. The
multifractal spectrum width in the �-f��� curve in Fig. 7�a�
reflects the nonlinear features of time series characterized by
diverse local Hurst exponents �2,4�. The width is defined by
the difference ���� between the minimum Hurst exponent
��min� and the maximum Hurst exponent ��max� in Fig. 7�a�.
Figure 7�b� shows �min and �max for the FX �index i=1–5�

FIG. 5. �a� The rescaled functions R�n� in Eq. �9� for the HRV
��� and FX ��� data in Figs. 4�a� and 4�b�, respectively. �b� The
distribution of  and T for the magnitude cross-correlation C�n� of
36 HRV data ��� and nine FX data ���.

FIG. 6. �a� The functions C�n� ��� for x�t�’s of five HRV data in
Fig. 3�a� and ��� for x�t�’s of their surrogate data. �b� The function
C�n� ��� for x�t�’s of five FX data in Fig. 3�b� and ��� for x�t�’s of
their surrogate data.

FIG. 7. �a� The multifractal spectrum for the typical HRV ���
and FX ��� data. �b� The minimum � �dotted line� and the maxi-
mum � �solid line� in the �-f��� curve for FX �i=1–5� and HRV
�i=6–10� data.
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and HRV �i=6–10� data in Fig. 4, respectively. We can see
that the width �� �=0.28±0.04� of the FX data is much
narrower than �� �=0.59±0.13� of the HRV data.

VI. CONCLUSION

In summary, we have provided the basic relation between
the correlation properties of the original signal and its mag-
nitude fluctuation from the superposition rule of the DFA
method. The relation can be explained by the time organiza-
tion structure in the correlation between the fluctuation of the
magnitude of the positive and negative components of the
original signal. We have proposed the magnitude cross-
correlation function C�n� to show the nontrivial correlation
structure between these two component signals for empirical
HRV and FX data. Moreover, signals x�t� with identical
long-range correlations H
 in their magnitude fluctuations
can exhibit different time organizations H depending on the

behavior of the magnitude cross-correlation function C�n�
for the scale n. Our method can be applied to elaborate cor-
relation analysis and classification of diverse complex sig-
nals including medical, economic, and climatic signals. In
particular, stochastic models such as long-memory stochastic
volatility and fractionally integrated GARCH �FIGARCH�,
which allows for long memory in the conditional variance of
price changes �13�, in econometrics treat the long-memory
property in absolute returns of price data with short-range
correlation. Those need to be tuned to reflect the time orga-
nization structure of the magnitude cross-correlation func-
tion.
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